89.22.2 problem 2

Internal problem ID [24790]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 10. Nonhomogeneous Equations: Operational methods. Exercises at page 161
Problem number : 2
Date solved : Thursday, October 02, 2025 at 10:48:03 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-y&=x^{4} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)-y(x) = x^4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} c_2 +{\mathrm e}^{x} c_1 -x^{4}-12 x^{2}-24 \]
Mathematica. Time used: 0.008 (sec). Leaf size: 31
ode=D[y[x],{x,2}]-y[x]== x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x^4-12 x^2+c_1 e^x+c_2 e^{-x}-24 \end{align*}
Sympy. Time used: 0.057 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 - y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{x} - x^{4} - 12 x^{2} - 24 \]