89.22.4 problem 4

Internal problem ID [24792]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 10. Nonhomogeneous Equations: Operational methods. Exercises at page 161
Problem number : 4
Date solved : Thursday, October 02, 2025 at 10:48:04 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} 4 y^{\prime \prime }+y&=x^{4} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 26
ode:=4*diff(diff(y(x),x),x)+y(x) = x^4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (\frac {x}{2}\right ) c_2 +\cos \left (\frac {x}{2}\right ) c_1 +x^{4}-48 x^{2}+384 \]
Mathematica. Time used: 0.008 (sec). Leaf size: 33
ode=4*D[y[x],{x,2}]+y[x]== x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^4-48 x^2+c_1 \cos \left (\frac {x}{2}\right )+c_2 \sin \left (\frac {x}{2}\right )+384 \end{align*}
Sympy. Time used: 0.055 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 + y(x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\frac {x}{2} \right )} + C_{2} \cos {\left (\frac {x}{2} \right )} + x^{4} - 48 x^{2} + 384 \]