Internal
problem
ID
[24828]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
10.
Nonhomogeneous
Equations:
Operational
methods.
Miscellaneous
Exercises
at
page
162
Problem
number
:
24
Date
solved
:
Thursday, October 02, 2025 at 10:48:23 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-3*diff(y(x),x)+2*y(x) = x^2-2*x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-3*D[y[x],{x,1}]+2*y[x]==x^2-2*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 + 2*x + 2*y(x) - 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)