89.23.31 problem 35

Internal problem ID [24835]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 10. Nonhomogeneous Equations: Operational methods. Miscellaneous Exercises at page 162
Problem number : 35
Date solved : Thursday, October 02, 2025 at 10:48:28 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x +2 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 10
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = x+2; 
ic:=[y(0) = 1, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x}+x \]
Mathematica. Time used: 0.008 (sec). Leaf size: 12
ode=D[y[x],{x,2}]+2*D[y[x],{x,1}]+y[x]== x+2; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x+e^{-x} \end{align*}
Sympy. Time used: 0.109 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2,0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x + e^{- x} \]