89.24.4 problem 4

Internal problem ID [24841]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 11. Variation of parameters and other methods. Exercises at page 171
Problem number : 4
Date solved : Thursday, October 02, 2025 at 10:48:32 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)+y(x) = sec(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +\ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) \sin \left (x \right )-1 \]
Mathematica. Time used: 0.019 (sec). Leaf size: 28
ode=D[y[x],{x,2}]+y[x]== Sec[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 2 \sin (x) \text {arctanh}\left (\tan \left (\frac {x}{2}\right )\right )+c_1 \cos (x)+c_2 \sin (x)-1 \end{align*}
Sympy. Time used: 0.189 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - sec(x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \cos {\left (x \right )} + \left (C_{1} - \frac {\log {\left (\sin {\left (x \right )} - 1 \right )}}{2} + \frac {\log {\left (\sin {\left (x \right )} + 1 \right )}}{2}\right ) \sin {\left (x \right )} - 1 \]