Internal
problem
ID
[24870]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
11.
Variation
of
parameters
and
other
methods.
Miscellaneous
Exercises
at
page
177
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 10:48:53 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-y(x) = exp(2*x)*(3*tan(exp(x))+exp(x)*sec(exp(x))^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-y[x]== Exp[2*x]*(3*Tan[Exp[x]] +Exp[x] * Sec[ Exp[x]]^2 ); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(exp(x)*sec(exp(x))**2 + 3*tan(exp(x)))*exp(2*x) - y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)