Internal
problem
ID
[24887]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
13.
Systems
of
equations.
Exercises
at
page
200
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 10:49:05 PM
CAS
classification
:
system_of_ODEs
ode:=[3*diff(v(x),x)+2*v(x)+diff(w(x),x)-6*w(x) = 5*exp(x), 4*diff(v(x),x)+2*v(x)+diff(w(x),x)-8*w(x) = 5*exp(x)+2*x-3]; dsolve(ode);
ode={3*D[v[x],x]+2*v[x]+D[w[x],x]-6*w[x]==5*Exp[x],4*D[v[x],x]+2*v[x]+D[w[x],x]-8*w[x]==5*Exp[x]+2*x-3}; ic={}; DSolve[{ode,ic},{w[x],v[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") w = Function("w") v = Function("v") ode=[Eq(2*v(x) - 6*w(x) - 5*exp(x) + 3*Derivative(v(x), x) + Derivative(w(x), x),0),Eq(-2*x + 2*v(x) - 8*w(x) - 5*exp(x) + 4*Derivative(v(x), x) + Derivative(w(x), x) + 3,0)] ics = {} dsolve(ode,func=[w(x),v(x)],ics=ics)