89.29.3 problem 9

Internal problem ID [24910]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 235
Problem number : 9
Date solved : Thursday, October 02, 2025 at 10:49:26 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.191 (sec). Leaf size: 97
ode:=3*x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {1}{12 x^{2}} \\ y &= \frac {i c_1 \sqrt {3}-3 x}{3 x \,c_1^{2}} \\ y &= \frac {i c_1 \sqrt {3}-3 x}{3 x \,c_1^{2}} \\ y &= \frac {-i c_1 \sqrt {3}-3 x}{3 x \,c_1^{2}} \\ y &= \frac {-i c_1 \sqrt {3}-3 x}{3 x \,c_1^{2}} \\ \end{align*}
Mathematica. Time used: 0.306 (sec). Leaf size: 123
ode=3*x^4*D[y[x],x]^2-x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [-\frac {x \sqrt {12 x^2 y(x)+1} \text {arctanh}\left (\sqrt {12 x^2 y(x)+1}\right )}{\sqrt {12 x^4 y(x)+x^2}}-\frac {1}{2} \log (y(x))=c_1,y(x)\right ]\\ \text {Solve}\left [\frac {x \sqrt {12 x^2 y(x)+1} \text {arctanh}\left (\sqrt {12 x^2 y(x)+1}\right )}{\sqrt {12 x^4 y(x)+x^2}}-\frac {1}{2} \log (y(x))=c_1,y(x)\right ]\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 2.501 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**4*Derivative(y(x), x)**2 - x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \left (C_{1} + \frac {2}{x}\right )}{12} \]