Internal
problem
ID
[24913]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
235
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 10:49:27 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]^2+4*x^5*D[y[x],x]-12*x^4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**5*Derivative(y(x), x) - 12*x**4*y(x) + Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)