Internal
problem
ID
[24920]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
243
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 10:49:44 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=2*x*diff(y(x),x)^3-6*y(x)*diff(y(x),x)^2+x^4 = 0; dsolve(ode,y(x), singsol=all);
ode=2*x*D[y[x],x]^3-6*y[x]*D[y[x],x]^2+x^4==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4 + 2*x*Derivative(y(x), x)**3 - 6*y(x)*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out