89.30.8 problem 10

Internal problem ID [24925]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 243
Problem number : 10
Date solved : Thursday, October 02, 2025 at 10:49:47 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} 4 x -2 y y^{\prime }+{y^{\prime }}^{2} x&=0 \end{align*}
Maple. Time used: 0.017 (sec). Leaf size: 30
ode:=x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -2 x \\ y &= 2 x \\ y &= \frac {4 c_1^{2}+x^{2}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 0.09 (sec). Leaf size: 43
ode=x*D[y[x],x]^2-2*y[x]*D[y[x],x]+4*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -2 x \cosh (-\log (x)+c_1)\\ y(x)&\to -2 x \cosh (\log (x)+c_1)\\ y(x)&\to -2 x\\ y(x)&\to 2 x \end{align*}
Sympy. Time used: 1.422 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + 4*x - 2*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 2 x^{2} e^{- C_{1}} + \frac {e^{C_{1}}}{2} \]