Internal
problem
ID
[24927]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
243
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 10:49:48 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]
ode:=x*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)+1-y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]^2+(x-y[x])*D[y[x],x]+1-y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x)**2 + (x - y(x))*Derivative(y(x), x) - y(x) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out