Internal
problem
ID
[24931]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
243
Problem
number
:
16
Date
solved
:
Saturday, October 04, 2025 at 05:36:08 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=x*diff(y(x),x)^4-2*y(x)*diff(y(x),x)^3+12*x^3 = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]^4-2*y[x]*D[y[x],x]^3+12*x^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(12*x**3 + x*Derivative(y(x), x)**4 - 2*y(x)*Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out