Internal
problem
ID
[24940]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
243
Problem
number
:
25
Date
solved
:
Thursday, October 02, 2025 at 11:36:19 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
ode:=5*diff(y(x),x)^2+6*x*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=5*D[y[x],x]^2+6*x*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*x*Derivative(y(x), x) - 2*y(x) + 5*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 3*x/5 - sqrt(9*x**2 + 10*y(x))/5 + Derivative(y(x), x) cannot be