89.31.13 problem 13

Internal problem ID [24958]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 246
Problem number : 13
Date solved : Thursday, October 02, 2025 at 11:36:37 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y {y^{\prime }}^{2}-x y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.046 (sec). Leaf size: 164
ode:=y(x)*diff(y(x),x)^2-x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ \frac {4 \ln \left (\frac {y}{x}\right ) y^{2}+\left (4 \,\operatorname {arctanh}\left (\frac {1}{\sqrt {-\frac {4 y^{2}-x^{2}}{x^{2}}}}\right )-4 c_1 +4 \ln \left (x \right )\right ) y^{2}-x^{2} \left (\sqrt {\frac {x^{2}-4 y^{2}}{x^{2}}}-1\right )}{4 y^{2}} &= 0 \\ \frac {4 \ln \left (\frac {y}{x}\right ) y^{2}+\left (-4 \,\operatorname {arctanh}\left (\frac {1}{\sqrt {-\frac {4 y^{2}-x^{2}}{x^{2}}}}\right )-4 c_1 +4 \ln \left (x \right )\right ) y^{2}+x^{2} \left (\sqrt {\frac {x^{2}-4 y^{2}}{x^{2}}}+1\right )}{4 y^{2}} &= 0 \\ \end{align*}
Mathematica. Time used: 0.819 (sec). Leaf size: 232
ode=y[x]*D[y[x],x]^2-x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {1}{2} \log \left (1+i \sqrt {\frac {2 y(x)}{x}-1} \sqrt {\frac {2 y(x)}{x}+1}\right )-\frac {\sqrt {\frac {2 y(x)}{x}-1} \sqrt {\frac {2 y(x)}{x}+1}}{2 \sqrt {\frac {2 y(x)}{x}-1} \sqrt {\frac {2 y(x)}{x}+1}-2 i}=-\frac {\log (x)}{2}+c_1,y(x)\right ]\\ \text {Solve}\left [\frac {1}{2} \log \left (1-i \sqrt {\frac {2 y(x)}{x}-1} \sqrt {\frac {2 y(x)}{x}+1}\right )-\frac {\sqrt {\frac {2 y(x)}{x}-1} \sqrt {\frac {2 y(x)}{x}+1}}{2 \sqrt {\frac {2 y(x)}{x}-1} \sqrt {\frac {2 y(x)}{x}+1}+2 i}=-\frac {\log (x)}{2}+c_1,y(x)\right ]\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 18.007 (sec). Leaf size: 119
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + y(x)*Derivative(y(x), x)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \log {\left (x \right )} = C_{1} - \log {\left (\sqrt {2} \sqrt {\sqrt {1 - \frac {4 y^{2}{\left (x \right )}}{x^{2}}} - 1 + \frac {2 y^{2}{\left (x \right )}}{x^{2}}} \right )} + \frac {1}{\sqrt {1 - \frac {4 y^{2}{\left (x \right )}}{x^{2}}} - 1}, \ \log {\left (x \right )} = C_{1} - \log {\left (\sqrt {2} \sqrt {- \sqrt {1 - \frac {4 y^{2}{\left (x \right )}}{x^{2}}} - 1 + \frac {2 y^{2}{\left (x \right )}}{x^{2}}} \right )} - \frac {1}{\sqrt {1 - \frac {4 y^{2}{\left (x \right )}}{x^{2}}} + 1}\right ] \]