Internal
problem
ID
[24986]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
17.
Special
Equations
of
order
Two.
Exercises
at
page
251
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 11:45:57 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)+diff(y(x),x)^2-2*x*diff(y(x),x) = 0; ic:=[y(2) = 5, D(y)(2) = -4]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+D[y[x],x]^2-2*x*D[y[x],x]==0; ic={y[2]==5,Derivative[1][y][2] ==-4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + Derivative(y(x), x)**2,0) ics = {y(2): 5, Subs(Derivative(y(x), x), x, 2): -4} dsolve(ode,func=y(x),ics=ics)