89.33.4 problem 4

Internal problem ID [24988]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 17. Special Equations of order Two. Exercises at page 251
Problem number : 4
Date solved : Thursday, October 02, 2025 at 11:46:00 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 33
ode:=y(x)*diff(diff(y(x),x),x)+diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \sqrt {2 c_1 x +2 c_2} \\ y &= -\sqrt {2 c_1 x +2 c_2} \\ \end{align*}
Mathematica. Time used: 0.115 (sec). Leaf size: 20
ode=y[x]*D[y[x],{x,2}]+D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2 \sqrt {2 x-c_1} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-y(x)*Derivative(y(x), (x, 2))) + Derivative(y(x), x) cann