89.33.15 problem 16

Internal problem ID [24999]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 17. Special Equations of order Two. Exercises at page 251
Problem number : 16
Date solved : Thursday, October 02, 2025 at 11:46:09 PM
CAS classification : [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} y^{\prime \prime }-{y^{\prime }}^{2} x&=0 \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&=\frac {\pi }{4} \\ y^{\prime }\left (2\right )&=-{\frac {1}{4}} \\ \end{align*}
Maple. Time used: 0.036 (sec). Leaf size: 8
ode:=diff(diff(y(x),x),x)-x*diff(y(x),x)^2 = 0; 
ic:=[y(2) = 1/4*Pi, D(y)(2) = -1/4]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \operatorname {arccot}\left (\frac {x}{2}\right ) \]
Mathematica. Time used: 0.713 (sec). Leaf size: 19
ode=D[y[x],{x,2}]-x* D[y[x],x]^2==0; 
ic={y[2]==Pi/4,Derivative[1][y][2] ==-1/4}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (\pi -2 \arctan \left (\frac {x}{2}\right )\right ) \end{align*}
Sympy. Time used: 0.491 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {y(2): pi/4, Subs(Derivative(y(x), x), x, 2): -1/4} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {i \log {\left (x - 2 i \right )}}{2} - \frac {i \log {\left (x + 2 i \right )}}{2} \]