89.33.22 problem 24

Internal problem ID [25006]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 17. Special Equations of order Two. Exercises at page 251
Problem number : 24
Date solved : Thursday, October 02, 2025 at 11:46:47 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x) = diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\ln \left (-c_1 x -c_2 \right ) \]
Mathematica. Time used: 0.109 (sec). Leaf size: 15
ode=D[y[x],{x,2}]==D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2-\log (x+c_1) \end{align*}
Sympy. Time used: 0.276 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - \log {\left (C_{2} + x \right )} \]