Internal
problem
ID
[1349]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
3,
Second
order
linear
equations,
section
3.6,
Variation
of
Parameters.
page
190
Problem
number
:
17
Date
solved
:
Tuesday, September 30, 2025 at 04:32:57 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+4*y(x) = x^2*ln(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+4*y[x] == x^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*log(x) + x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)