89.33.27 problem 30

Internal problem ID [25011]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 17. Special Equations of order Two. Exercises at page 251
Problem number : 30
Date solved : Thursday, October 02, 2025 at 11:46:53 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \end{align*}
Maple. Time used: 0.029 (sec). Leaf size: 49
ode:=diff(diff(y(x),x),x) = (1+diff(y(x),x)^2)^(3/2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i x +c_1 \\ y &= i x +c_1 \\ y &= \left (c_1 +x +1\right ) \left (c_1 +x -1\right ) \sqrt {-\frac {1}{\left (c_1 +x +1\right ) \left (c_1 +x -1\right )}}+c_2 \\ \end{align*}
Mathematica. Time used: 0.157 (sec). Leaf size: 59
ode=D[y[x],{x,2}]==(1+D[y[x],x]^2)^(3/2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2-i \sqrt {x^2+2 c_1 x-1+c_1{}^2}\\ y(x)&\to i \sqrt {x^2+2 c_1 x-1+c_1{}^2}+c_2 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(Derivative(y(x), x)**2 + 1)**(3/2) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-(Derivative(y(x), (x, 2))**2)**(1/3)/2 + sqrt(3)*I*(Deriv