Internal
problem
ID
[25020]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
17.
Special
Equations
of
order
Two.
Exercises
at
page
251
Problem
number
:
39
Date
solved
:
Thursday, October 02, 2025 at 11:47:19 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=diff(diff(y(x),x),x)^2-2*diff(diff(y(x),x),x)+diff(y(x),x)^2-2*x*diff(y(x),x)+x^2 = 0; ic:=[y(0) = 1/2, D(y)(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]^2-2*D[y[x],{x,2}]+D[y[x],x]^2-2*x*D[y[x],x]+x^2 ==0 ; ic={y[0]==1/2,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 - 2*x*Derivative(y(x), x) + Derivative(y(x), x)**2 + Derivative(y(x), (x, 2))**2 - 2*Derivative(y(x), (x, 2)),0) ics = {y(0): 1/2, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)
Timed Out