4.10.21 problem 31

Internal problem ID [1353]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number : 31
Date solved : Tuesday, September 30, 2025 at 04:33:03 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y&=t^{2} {\mathrm e}^{2 t} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 23
ode:=t*diff(diff(y(t),t),t)-(t+1)*diff(y(t),t)+y(t) = exp(2*t)*t^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \left (1+t \right ) c_2 +{\mathrm e}^{t} c_1 +\frac {\left (t -1\right ) {\mathrm e}^{2 t}}{2} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 31
ode=t*D[y[t],{t,2}]-(1+t)*D[y[t],t]+y[t] ==t^2*Exp[2*t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {1}{2} e^{2 t} (t-1)+c_1 e^t-c_2 (t+1) \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**2*exp(2*t) + t*Derivative(y(t), (t, 2)) - (t + 1)*Derivative(y(t), t) + y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(t), t) - (-t**2*exp(2*t) + t*Derivative(y(t), (t, 2)) + y(t))/(t + 1) cannot be solved by the factorable group method