90.2.10 problem 10

Internal problem ID [25061]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 23
Problem number : 10
Date solved : Thursday, October 02, 2025 at 11:48:06 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 11
ode:=diff(y(t),t) = y(t)^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {1}{-t +c_1} \]
Mathematica. Time used: 0.045 (sec). Leaf size: 18
ode=D[y[t],{t,1}]== y[t]^2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\frac {1}{t+c_1}\\ y(t)&\to 0 \end{align*}
Sympy. Time used: 0.074 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**2 + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \frac {1}{C_{1} + t} \]