90.3.7 problem 7

Internal problem ID [25071]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 41
Problem number : 7
Date solved : Thursday, October 02, 2025 at 11:48:18 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} \left (t^{2}+3 y^{2}\right ) y^{\prime }&=-2 y t \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 189
ode:=(t^2+3*y(t)^2)*diff(y(t),t) = -2*t*y(t); 
dsolve(ode,y(t), singsol=all);
 
\begin{align*} y &= \frac {-12 t^{2} c_1 +\left (108+12 \sqrt {12 t^{6} c_1^{3}+81}\right )^{{2}/{3}}}{6 \left (108+12 \sqrt {12 t^{6} c_1^{3}+81}\right )^{{1}/{3}} \sqrt {c_1}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (108+12 \sqrt {12 t^{6} c_1^{3}+81}\right )^{{1}/{3}}}{12 \sqrt {c_1}}-\frac {\sqrt {c_1}\, t^{2} \left (i \sqrt {3}-1\right )}{\left (108+12 \sqrt {12 t^{6} c_1^{3}+81}\right )^{{1}/{3}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (108+12 \sqrt {12 t^{6} c_1^{3}+81}\right )^{{1}/{3}}}{12 \sqrt {c_1}}+\frac {\sqrt {c_1}\, \left (1+i \sqrt {3}\right ) t^{2}}{\left (108+12 \sqrt {12 t^{6} c_1^{3}+81}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 28.067 (sec). Leaf size: 442
ode=(t^2+3*y[t]^2)*D[y[t],{t,1}]==-2*t*y[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {-2 \sqrt [3]{3} t^2+\sqrt [3]{2} \left (\sqrt {12 t^6+81 e^{2 c_1}}+9 e^{c_1}\right ){}^{2/3}}{6^{2/3} \sqrt [3]{\sqrt {12 t^6+81 e^{2 c_1}}+9 e^{c_1}}}\\ y(t)&\to \frac {i 2^{2/3} \sqrt [3]{3} \left (\sqrt {3}+i\right ) \left (\sqrt {12 t^6+81 e^{2 c_1}}+9 e^{c_1}\right ){}^{2/3}+2 \sqrt [3]{2} \sqrt [6]{3} \left (\sqrt {3}+3 i\right ) t^2}{12 \sqrt [3]{\sqrt {12 t^6+81 e^{2 c_1}}+9 e^{c_1}}}\\ y(t)&\to \frac {2^{2/3} \sqrt [3]{3} \left (-1-i \sqrt {3}\right ) \left (\sqrt {12 t^6+81 e^{2 c_1}}+9 e^{c_1}\right ){}^{2/3}+2 \sqrt [3]{2} \sqrt [6]{3} \left (\sqrt {3}-3 i\right ) t^2}{12 \sqrt [3]{\sqrt {12 t^6+81 e^{2 c_1}}+9 e^{c_1}}}\\ y(t)&\to 0\\ y(t)&\to \frac {\sqrt [3]{t^6}-t^2}{\sqrt {3} \sqrt [6]{t^6}}\\ y(t)&\to \frac {\left (\sqrt {3}-3 i\right ) t^2-\left (\sqrt {3}+3 i\right ) \sqrt [3]{t^6}}{6 \sqrt [6]{t^6}}\\ y(t)&\to \frac {\left (\sqrt {3}+3 i\right ) t^2-\left (\sqrt {3}-3 i\right ) \sqrt [3]{t^6}}{6 \sqrt [6]{t^6}} \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(2*t*y(t) + (t**2 + 3*y(t)**2)*Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
Timed Out