90.3.13 problem 13

Internal problem ID [25077]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 41
Problem number : 13
Date solved : Thursday, October 02, 2025 at 11:49:26 PM
CAS classification : [_separable]

\begin{align*} y^{4} y^{\prime }&=t +2 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 176
ode:=y(t)^4*diff(y(t),t) = t+2; 
dsolve(ode,y(t), singsol=all);
 
\begin{align*} y &= \frac {\left (80 t^{2}+32 c_1 +320 t \right )^{{1}/{5}}}{2} \\ y &= -\frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}+\sqrt {5}+1\right ) \left (80 t^{2}+32 c_1 +320 t \right )^{{1}/{5}}}{8} \\ y &= \frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}-\sqrt {5}-1\right ) \left (80 t^{2}+32 c_1 +320 t \right )^{{1}/{5}}}{8} \\ y &= -\frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}-\sqrt {5}+1\right ) \left (80 t^{2}+32 c_1 +320 t \right )^{{1}/{5}}}{8} \\ y &= \frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}+\sqrt {5}-1\right ) \left (80 t^{2}+32 c_1 +320 t \right )^{{1}/{5}}}{8} \\ \end{align*}
Mathematica. Time used: 0.124 (sec). Leaf size: 153
ode=y[t]^4*D[y[t],{t,1}]==t+2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\sqrt [5]{-\frac {5}{2}} \sqrt [5]{t^2+4 t+2 c_1}\\ y(t)&\to \sqrt [5]{\frac {5}{2}} \sqrt [5]{t^2+4 t+2 c_1}\\ y(t)&\to (-1)^{2/5} \sqrt [5]{\frac {5}{2}} \sqrt [5]{t^2+4 t+2 c_1}\\ y(t)&\to -(-1)^{3/5} \sqrt [5]{\frac {5}{2}} \sqrt [5]{t^2+4 t+2 c_1}\\ y(t)&\to (-1)^{4/5} \sqrt [5]{\frac {5}{2}} \sqrt [5]{t^2+4 t+2 c_1} \end{align*}
Sympy. Time used: 5.563 (sec). Leaf size: 189
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t + y(t)**4*Derivative(y(t), t) - 2,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ \left [ y{\left (t \right )} = \sqrt [5]{C_{1} + \frac {5 t^{2}}{2} + 10 t}, \ y{\left (t \right )} = \frac {\left (- \sqrt {5} - 1 - \sqrt {2} i \sqrt {5 - \sqrt {5}}\right ) \sqrt [5]{C_{1} + \frac {5 t^{2}}{2} + 10 t}}{4}, \ y{\left (t \right )} = \frac {\left (- \sqrt {5} - 1 + \sqrt {2} i \sqrt {5 - \sqrt {5}}\right ) \sqrt [5]{C_{1} + \frac {5 t^{2}}{2} + 10 t}}{4}, \ y{\left (t \right )} = \frac {\left (-1 + \sqrt {5} - \sqrt {2} i \sqrt {\sqrt {5} + 5}\right ) \sqrt [5]{C_{1} + \frac {5 t^{2}}{2} + 10 t}}{4}, \ y{\left (t \right )} = \frac {\left (-1 + \sqrt {5} + \sqrt {2} i \sqrt {\sqrt {5} + 5}\right ) \sqrt [5]{C_{1} + \frac {5 t^{2}}{2} + 10 t}}{4}\right ] \]