90.3.19 problem 19

Internal problem ID [25083]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 41
Problem number : 19
Date solved : Thursday, October 02, 2025 at 11:49:37 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=1+y^{2} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 8
ode:=diff(y(t),t) = y(t)^2+1; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \tan \left (t +c_1 \right ) \]
Mathematica. Time used: 0.086 (sec). Leaf size: 24
ode=D[y[t],{t,1}] ==y[t]^2+1; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \tan (t+c_1)\\ y(t)&\to -i\\ y(t)&\to i \end{align*}
Sympy. Time used: 0.156 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**2 + Derivative(y(t), t) - 1,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \tan {\left (C_{1} - t \right )} \]