90.5.12 problem 12

Internal problem ID [25131]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 71
Problem number : 12
Date solved : Thursday, October 02, 2025 at 11:53:28 PM
CAS classification : [_Bernoulli]

\begin{align*} y t +y^{\prime }&=t^{3} y^{3} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 35
ode:=diff(y(t),t)+t*y(t) = t^3*y(t)^3; 
dsolve(ode,y(t), singsol=all);
 
\begin{align*} y &= \frac {1}{\sqrt {{\mathrm e}^{t^{2}} c_1 +t^{2}+1}} \\ y &= -\frac {1}{\sqrt {{\mathrm e}^{t^{2}} c_1 +t^{2}+1}} \\ \end{align*}
Mathematica. Time used: 7.069 (sec). Leaf size: 50
ode=D[y[t],{t,1}] +t*y[t] == t^3*y[t]^3; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\frac {1}{\sqrt {t^2+c_1 e^{t^2}+1}}\\ y(t)&\to \frac {1}{\sqrt {t^2+c_1 e^{t^2}+1}}\\ y(t)&\to 0 \end{align*}
Sympy. Time used: 0.517 (sec). Leaf size: 39
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**3*y(t)**3 + t*y(t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ \left [ y{\left (t \right )} = - \sqrt {\frac {1}{C_{1} e^{t^{2}} + t^{2} + 1}}, \ y{\left (t \right )} = \sqrt {\frac {1}{C_{1} e^{t^{2}} + t^{2} + 1}}\right ] \]