Internal
problem
ID
[25139]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
1.
First
order
differential
equations.
Exercises
at
page
71
Problem
number
:
21
Date
solved
:
Thursday, October 02, 2025 at 11:53:47 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=diff(y(t),t) = 1/(y(t)+t)^2; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,1}] == 1/(t+y[t])^2; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(Derivative(y(t), t) - 1/(t + y(t))**2,0) ics = {} dsolve(ode,func=y(t),ics=ics)