Internal
problem
ID
[25143]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
1.
First
order
differential
equations.
Exercises
at
page
71
Problem
number
:
25
Date
solved
:
Thursday, October 02, 2025 at 11:54:37 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=diff(y(t),t)+y(t)*ln(y(t)) = t*y(t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,1}] +y[t]*Log[y[t]] == t*y[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t*y(t) + y(t)*log(y(t)) + Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)