Internal
problem
ID
[25146]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
1.
First
order
differential
equations.
Exercises
at
page
83
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 11:54:44 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
ode:=y(t)-t+(t+2*y(t))*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=(y[t]-t)+(t+2*y[t])*D[y[t],{t,1}] == 0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t + (t + 2*y(t))*Derivative(y(t), t) + y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)