Internal
problem
ID
[25151]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
1.
First
order
differential
equations.
Exercises
at
page
83
Problem
number
:
7
Date
solved
:
Thursday, October 02, 2025 at 11:55:04 PM
CAS
classification
:
[[_homogeneous, `class G`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
ode:=2*t*y(t)+2*t^3+(t^2-y(t))*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=2*t*y[t]+2*t^3+(t^2-y[t])*D[y[t],t]== 0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t**3 + 2*t*y(t) + (t**2 - y(t))*Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)