90.7.2 problem 2

Internal problem ID [25156]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 99
Problem number : 2
Date solved : Thursday, October 02, 2025 at 11:55:19 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=-1 \\ \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 11
ode:=diff(y(t),t) = y(t)^2; 
ic:=[y(0) = -1]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = -\frac {1}{t +1} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 12
ode=D[y[t],t]== y[t]^2; 
ic={y[0]==-1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\frac {1}{t+1} \end{align*}
Sympy. Time used: 0.080 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**2 + Derivative(y(t), t),0) 
ics = {y(0): -1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \frac {1}{t + 1} \]