90.7.12 problem 12

Internal problem ID [25166]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 1. First order differential equations. Exercises at page 99
Problem number : 12
Date solved : Thursday, October 02, 2025 at 11:55:56 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sqrt {y} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 11
ode:=diff(y(t),t) = y(t)^(1/2); 
ic:=[y(0) = 1]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \frac {\left (t +2\right )^{2}}{4} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 14
ode=D[y[t],t]== Sqrt[y[t]]; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {1}{4} (t+2)^2 \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-sqrt(y(t)) + Derivative(y(t), t),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(t),ics=ics)
 
NotImplementedError : Initial conditions produced too many solutions for constants