Internal
problem
ID
[25168]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
1.
First
order
differential
equations.
Exercises
at
page
99
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 11:56:09 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=diff(y(t),t) = (t-y(t))/(y(t)+t); ic:=[y(1) = -1]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],t]== (t-y[t])/(t+y[t]); ic={y[1]==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((-t + y(t))/(t + y(t)) + Derivative(y(t), t),0) ics = {y(1): -1} dsolve(ode,func=y(t),ics=ics)