Internal
problem
ID
[25171]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
1.
First
order
differential
equations.
Exercises
at
page
99
Problem
number
:
17
Date
solved
:
Thursday, October 02, 2025 at 11:56:17 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
With initial conditions
ode:=diff(y(t),t) = cos(y(t)+t); ic:=[y(t__0) = y__0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],t]== Cos[t+y[t]]; ic={y[t0]==y0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") t0 = symbols("t0") y0 = symbols("y0") y = Function("y") ode = Eq(-cos(t + y(t)) + Derivative(y(t), t),0) ics = {y(t0): y0} dsolve(ode,func=y(t),ics=ics)