90.8.7 problem 7

Internal problem ID [25181]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 2. The Laplace Transform. Exercises at page 109
Problem number : 7
Date solved : Thursday, October 02, 2025 at 11:57:37 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=3 \\ y^{\prime }\left (0\right )&=-6 \\ \end{align*}
Maple. Time used: 0.037 (sec). Leaf size: 10
ode:=diff(diff(y(t),t),t)+3*diff(y(t),t)+2*y(t) = 0; 
ic:=[y(0) = 3, D(y)(0) = -6]; 
dsolve([ode,op(ic)],y(t),method='laplace');
 
\[ y = 3 \,{\mathrm e}^{-2 t} \]
Mathematica. Time used: 0.02 (sec). Leaf size: 12
ode=D[y[t],{t,2}]+3*D[y[t],t]+2*y[t]==0; 
ic={y[0]==3,Derivative[1][y][0] ==-6}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to 3 e^{-2 t} \end{align*}
Sympy. Time used: 0.104 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(2*y(t) + 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): -6} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 3 e^{- 2 t} \]