Internal
problem
ID
[25191]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
2.
The
Laplace
Transform.
Exercises
at
page
139
Problem
number
:
35
Date
solved
:
Thursday, October 02, 2025 at 11:57:41 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)-5*y(t) = 150*t; ic:=[y(0) = -1, D(y)(0) = 1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]-4*D[y[t],{t,1}]-5*y[t]==150*t; ic={y[0]==-1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-150*t - 5*y(t) - 3*Derivative(y(t), (t, 2)),0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)