Internal
problem
ID
[25255]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
3.
Second
Order
Constant
Coefficient
Linear
Differential
Equations.
Exercises
at
page
251
Problem
number
:
8
Date
solved
:
Thursday, October 02, 2025 at 11:59:23 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)-5*diff(y(t),t)-6*y(t) = 10*exp(4*t)*t; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-5*D[y[t],{t,1}]-6*y[t]==10*t*Exp[4*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-10*t*exp(4*t) - 6*y(t) - 4*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)