90.16.2 problem 2

Internal problem ID [25260]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 4. Linear Constant Coefficient Differential Equations. Exercises at page 283
Problem number : 2
Date solved : Thursday, October 02, 2025 at 11:59:26 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime }+4 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 25
ode:=diff(diff(diff(diff(y(t),t),t),t),t)+diff(y(t),t)+4*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \moverset {4}{\munderset {\textit {\_a} =1}{\sum }}{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{4}+\textit {\_Z} +4, \operatorname {index} =\textit {\_a} \right ) t} \textit {\_C}_{\textit {\_a}} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 82
ode=D[y[t],{t,4}]+D[y[t],{t,1}]+4*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to c_1 \exp \left (t \text {Root}\left [\text {$\#$1}^4+\text {$\#$1}+4\&,1\right ]\right )+c_2 \exp \left (t \text {Root}\left [\text {$\#$1}^4+\text {$\#$1}+4\&,2\right ]\right )+c_3 \exp \left (t \text {Root}\left [\text {$\#$1}^4+\text {$\#$1}+4\&,3\right ]\right )+c_4 \exp \left (t \text {Root}\left [\text {$\#$1}^4+\text {$\#$1}+4\&,4\right ]\right ) \end{align*}
Sympy. Time used: 4.335 (sec). Leaf size: 484
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) + Derivative(y(t), t) + Derivative(y(t), (t, 4)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} \sin {\left (\frac {t \sqrt {\left |{\frac {16 \sqrt [3]{18}}{3 \sqrt [3]{9 + \sqrt {49071} i}} - \frac {2 \sqrt {6}}{\sqrt {\frac {32 \sqrt [3]{18}}{\sqrt [3]{9 + \sqrt {49071} i}} + \sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}} + \frac {\sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}{6}}\right |}}{2} \right )} + C_{2} \cos {\left (\frac {t \sqrt {\frac {16 \sqrt [3]{18}}{3 \sqrt [3]{9 + \sqrt {49071} i}} - \frac {2 \sqrt {6}}{\sqrt {\frac {32 \sqrt [3]{18}}{\sqrt [3]{9 + \sqrt {49071} i}} + \sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}} + \frac {\sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}{6}}}{2} \right )}\right ) e^{- \frac {\sqrt {6} t \sqrt {\frac {32 \sqrt [3]{18}}{\sqrt [3]{9 + \sqrt {49071} i}} + \sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}}{12}} + \left (C_{3} \sin {\left (\frac {t \sqrt {\left |{\frac {16 \sqrt [3]{18}}{3 \sqrt [3]{9 + \sqrt {49071} i}} + \frac {2 \sqrt {6}}{\sqrt {\frac {32 \sqrt [3]{18}}{\sqrt [3]{9 + \sqrt {49071} i}} + \sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}} + \frac {\sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}{6}}\right |}}{2} \right )} + C_{4} \cos {\left (\frac {t \sqrt {\frac {16 \sqrt [3]{18}}{3 \sqrt [3]{9 + \sqrt {49071} i}} + \frac {2 \sqrt {6}}{\sqrt {\frac {32 \sqrt [3]{18}}{\sqrt [3]{9 + \sqrt {49071} i}} + \sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}} + \frac {\sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}{6}}}{2} \right )}\right ) e^{\frac {\sqrt {6} t \sqrt {\frac {32 \sqrt [3]{18}}{\sqrt [3]{9 + \sqrt {49071} i}} + \sqrt [3]{12} \sqrt [3]{9 + \sqrt {49071} i}}}{12}} \]