Internal
problem
ID
[25280]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
4.
Linear
Constant
Coefficient
Differential
Equations.
Exercises
at
page
299
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 11:59:33 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-5*diff(diff(y(t),t),t)+4*y(t) = exp(2*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,4}]-5*D[y[t],{t,2}]+4*y[t]==Exp[2*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) - exp(2*t) - 5*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 4)),0) ics = {} dsolve(ode,func=y(t),ics=ics)