90.20.2 problem 2

Internal problem ID [25297]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 5. Second Order Linear Differential Equations. Exercises at page 337
Problem number : 2
Date solved : Thursday, October 02, 2025 at 11:59:40 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 28
ode:=diff(diff(y(t),t),t)+diff(y(t),t)+y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {t}{2}} \left (c_1 \sin \left (\frac {\sqrt {3}\, t}{2}\right )+c_2 \cos \left (\frac {\sqrt {3}\, t}{2}\right )\right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 42
ode=D[y[t],{t,2}]+D[y[t],{t,1}]+y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^{-t/2} \left (c_2 \cos \left (\frac {\sqrt {3} t}{2}\right )+c_1 \sin \left (\frac {\sqrt {3} t}{2}\right )\right ) \end{align*}
Sympy. Time used: 0.106 (sec). Leaf size: 31
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) + Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} \sin {\left (\frac {\sqrt {3} t}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} t}{2} \right )}\right ) e^{- \frac {t}{2}} \]