Internal
problem
ID
[25301]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
337
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 11:59:46 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(t),t),t)+diff(y(t),t)^(1/2)+y(t) = t; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+Sqrt[D[y[t],{t,1}]]+y[t]==t; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t + y(t) + sqrt(Derivative(y(t), t)) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE -(-t + y(t) + Derivative(y(t), (t, 2)))**2 + Derivative(y(t), t)