Internal
problem
ID
[25306]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
337
Problem
number
:
11
Date
solved
:
Thursday, October 02, 2025 at 11:59:49 PM
CAS
classification
:
[_Bessel]
ode:=t^2*diff(diff(y(t),t),t)+t*diff(y(t),t)+(t^2-5)*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+t*D[y[t],t]+(t^2-5)*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) + t*Derivative(y(t), t) + (t**2 - 5)*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)