Internal
problem
ID
[25311]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
337
Problem
number
:
16
(3
a)
Date
solved
:
Thursday, October 02, 2025 at 11:59:53 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=(t^2+1)*diff(diff(y(t),t),t)-4*t*diff(y(t),t)+6*y(t) = 2*t; ic:=[y(0) = 1, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=(1+t^2)*D[y[t],{t,2}]-4*t*D[y[t],t]+6*y[t]==2*t; ic={y[0]==1,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*t*Derivative(y(t), t) - 2*t + (t**2 + 1)*Derivative(y(t), (t, 2)) + 6*y(t),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (t*(t*Derivative(y(t), (t, 2)) - 2) + 6*y(