Internal
problem
ID
[25315]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
337
Problem
number
:
17
(1)
Date
solved
:
Thursday, October 02, 2025 at 11:59:56 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(t-1)*diff(diff(y(t),t),t)-t*diff(y(t),t)+y(t) = 2*t*exp(-t); dsolve(ode,y(t), singsol=all);
ode=(t-1)*D[y[t],{t,2}]-t*D[y[t],t]+y[t]==2*t*Exp[-t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t*Derivative(y(t), t) - 2*t*exp(-t) + (t - 1)*Derivative(y(t), (t, 2)) + y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - Derivative(y(t), (t, 2)) + 2*exp(-t) - y(t