90.20.26 problem 18 (1)

Internal problem ID [25321]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 5. Second Order Linear Differential Equations. Exercises at page 337
Problem number : 18 (1)
Date solved : Friday, October 03, 2025 at 12:00:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y&=t^{5} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 20
ode:=t^2*diff(diff(y(t),t),t)-4*t*diff(y(t),t)+6*y(t) = t^5; 
dsolve(ode,y(t), singsol=all);
 
\[ y = t^{2} c_2 +t^{3} c_1 +\frac {1}{6} t^{5} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 25
ode=t^2*D[y[t],{t,2}]-4*t*D[y[t],t]+6*y[t]==t^5; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {1}{6} t^2 \left (t^3+6 c_2 t+6 c_1\right ) \end{align*}
Sympy. Time used: 0.209 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**5 + t**2*Derivative(y(t), (t, 2)) - 4*t*Derivative(y(t), t) + 6*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t^{2} \left (C_{1} + C_{2} t + \frac {t^{3}}{6}\right ) \]