Internal
problem
ID
[25329]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
337
Problem
number
:
21
Date
solved
:
Friday, October 03, 2025 at 12:00:13 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=sin(t)*diff(diff(y(t),t),t)+y(t) = cos(t); ic:=[y(1/2*Pi) = y__1, D(y)(1/2*Pi) = y__1]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=Sin[t]*D[y[t],{t,2}]+y[t]==Cos[t]; ic={y[Pi/2]==y1,Derivative[1][y][Pi/2] ==y1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
{}
from sympy import * t = symbols("t") y1 = symbols("y1") y = Function("y") ode = Eq(y(t) + sin(t)*Derivative(y(t), (t, 2)) - cos(t),0) ics = {y(pi/2): y1, Subs(Derivative(y(t), t), t, pi/2): y1} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : solve: Cannot solve y(t) + sin(t)*Derivative(y(t), (t, 2)) - cos(t)