Internal
problem
ID
[25342]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
353
Problem
number
:
4
Date
solved
:
Friday, October 03, 2025 at 12:00:24 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=t^2*diff(diff(y(t),t),t)+t*diff(y(t),t)-2*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+t*D[y[t],t]-2*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) + t*Derivative(y(t), t) - 2*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)