90.22.11 problem 11

Internal problem ID [25349]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 5. Second Order Linear Differential Equations. Exercises at page 353
Problem number : 11
Date solved : Friday, October 03, 2025 at 12:00:29 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} t^{2} y^{\prime \prime }-3 t y^{\prime }+13 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=t^2*diff(diff(y(t),t),t)-3*t*diff(y(t),t)+13*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = t^{2} \left (c_1 \sin \left (3 \ln \left (t \right )\right )+c_2 \cos \left (3 \ln \left (t \right )\right )\right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 26
ode=t^2*D[y[t],{t,2}]-3*t*D[y[t],t]+13*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to t^2 (c_2 \cos (3 \log (t))+c_1 \sin (3 \log (t))) \end{align*}
Sympy. Time used: 0.116 (sec). Leaf size: 22
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) - 3*t*Derivative(y(t), t) + 13*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t^{2} \left (C_{1} \sin {\left (3 \log {\left (t \right )} \right )} + C_{2} \cos {\left (3 \log {\left (t \right )} \right )}\right ) \]